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Aqueous solutions of polyethylene oxide have been studied under the conditions of nonstationary longitudinal
flow. The investigations have confirmed the deviations from Darcy’s law according to the mechanism the
basis for which is provided by the concepts of a strong strain action of the hydrodynamic field on coiled
macromolecules.

Experiments were conducted with the aim of elucidating the nature of the mechanism of an "abnormally" high
degree of coverage of a porous bed with a polymer solution. The most contradictory opinions as to the nonlinearity of
filtration flow of polymer solutions are being stated; most researchers believe that the nonlinearity is caused by the ad-
sorption of macromolecules onto the porous-medium walls [1, 2]. There is an opinion that the deviations from Darcy’s
law are due to the elastic-strain effects manifesting themselves in the case of flow of solutions of flexible-chain poly-
mers in a porous medium [3, 4]. Below, we will be dealing with experiments on checking the mechanism of an "ab-
normally" high degree of coverage of a porous bed with polymer solutions; the basis for this mechanism is provided
by the concepts of a strong strain action of the hydrodynamic field on coiled macromolecules in filtration flow [5].

The mechanism of deviations from Darcy’s law lies in the self-oscillating regime of reversible processes of
unrolling of macromolecules under the action of the longitudinal velocity gradients quasiregularly arising in the porous
medium and in the influence of unrolling macromolecules at both the molecular and supermolecular levels on the
structure of the filtration flow. The oscillation of the strains of macromolecules and dynamic supermolecular formations
arising under the action of stretching flows results in the higher-than-average energy dissipation and the flow non-
linearity. The latter ensures the equalization of the front of advance and filling of inhomogeneous laminar beds with
polymer fluid and hence a wider coverage of the bed.

From the above mechanism of nonlinearity of the filtration of polymer solutions and from the theory of elas-
tic-strain effects in the case of flow with extension of polymer solutions [3], it follows that the higher degree of cov-
erage of a porous medium must be attained in nonstationary injection of a polymer solution into it. To substantiate
this prediction we studied the aqueous solutions of polyethylene oxide (PEO) under the conditions of nonstationary
longitudinal flow.

Results and Their Discussion. In realizing the model regime of injection of a solution into a porous medium
(bed), the solution under study was forced through a flow chamber (module) under the action of a constant pressure
difference (see Fig. 1). This is an unusual kind of viscosimeter in which the hydroresistors are short capillaries.

In the stationary regime, flow through the hydroresistors was carried out by creation of a pressure difference
at the viscosimeter inlet and outlet, whereas in the nonstationary regime, it was carried out by superposition of a con-
stant pressure difference and the pulsating pressure arising in the vessel between the capillaries due to the vibrations
of the membrane of an electromagnetic vibrator. The amplitude of membrane vibrations was monitored by a special
device. It was constant at different frequencies in each run of experiments and was selected such that the rate of flow
(caused by the membrane vibrations) of the polymer solution through the capillaries was lower than the flow rate due
to the constant pressure difference. The nonstationary component of the flow velocity in the capillaries that was caused
by the pressure pulsations in the intercapillary volume was smaller than the flow velocity in the capillary due to the
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constant pressure difference in the viscosimeter. The flow-rate velocity of the polymer solution through the capillaries
was higher than the critical value [5]. The diameter of the capillaries was 0.2⋅10−3 m.

The hydrodynamic efficiency of the polymer solutions under study was evaluated by the value of the efficient
viscosity ηef, which was determined by comparison of the flow-rate velocities of the solution under study and calibra-
tion viscous Newtonian fluids at the same pressure difference. The entire unit was placed in a thermostat, where the
temperature of the solutions under study was monitored by an electronic heat controller.

The results of the experiment are presented in Fig. 2a, where ηef is the effective viscosity of the solution
under the conditions of stationary outflow and ∆ηef is the addition resulting from the nonstationarity that appeared
under the oscillating action on the mainstream flow. The curves correspond to different velocities of mainstream flow
through the capillaries. It is seen that the critical frequency of action ωcr

′  on the stationary flow exists; beginning with
this frequency, flow becomes more dissipative.

The quantity ωcr
′  grows with average flow-rate velocity, whereas ∆ηef decreases. With lower concentrations of

PEO in the solution and the same flow-rate velocity, the value of the critical frequency is higher.
When polymer systems (PEO solutions in our case) are strained, changes in the strains ε and the stresses σ

occur in different phases [6]. The angle δ ′ characterizing this difference is a composite function of the frequency of
actions ω′. Strain in this case is carried out under the action of the stress following the law

σ (t) = σ + σ0 exp (iω′t) . (1)

Taking into account that σ(t) = σ0 cos ω′t and ε(t) = ε0 cos (ω′t − δ ′) and eliminating the time from these
equalities, we obtain the equation
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Expression (2) represents the equation of an ellipse whose area is equal to the work A0 done in a cycle of harmonic
vibrations and irreversibly lost (dissipating) under strain. Then the dissipation function W is computed as the product
of A0 and the number of cycles per unit time:

Fig. 1. Diagram of a viscosimetric unit: 1) short capillary; 2) electromagnetic
vibrator; 3) zone of action of the vibrator.
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From relation (3) it is seen that, under the same conditions of strain, the dissipative function only depends on the
polymer characteristics expressed in the value of δ′.

Changing the stresses by the harmonic law, we may track a change in the strain rate ε
.
. The latter is related

to the strain ε as follows:

ε
.
 = 

dε
dt

 = ε0iω exp [i (ω′t − δ ′)] = iω′ε . (4)

The value of the ratio σ ⁄ ε
.
 is a complex dynamic viscosity η∗. This quantity may be represented in the form

of the real and imaginary components η∗ = η′ − iη′′, where η′ = (σ0
 ⁄ ε0ω′) sin δ ′ and η ′′ = (σ0

 ⁄ ε0ω′) cos δ ′. Intro-
ducing η′ into relation (3) and performing transformations, we obtain

W = η′ 
ε0

2ω′
2

2
 . (5)

Dynamic viscosity manifests itself in the system under strain, and the increment of the effective viscosity
∆ηef under the conditions of superposition of harmonic actions on mainstream flow is attributable to the appearance of
η′. Since the amplitude value of the strain ε0 remains constant in the experiment, we may use scaling and rewrite (5)
in the form

W(ω) = ∆ηefω
′
2

 . (6)

For the experimental curves (Fig. 2a), we have obtained dissipative-function curves (Fig. 2b) using expression
(6). An analysis of these curves shows that, as the average velocity of flow of the aqueous PEO solution through the
capillaries increases, i.e., as the fraction of macromolecules (because of the presence of the molecular-weight distribu-
tion) that have experienced unrolling [5] and are unrolled to a higher degree, which causes the induction of rigidity in
the macromolecules [3], increases, the dissipation of pulsating-flow energy decreases. The threshold value of the fre-

Fig. 2. Influence of the frequency of external action on the change in the ef-
fective viscosity (a) and the dissipative function (b) in the case of flow of an
aqueous PEO solution (MPEO = 4.5⋅106 and CPEO = 0.02%) through short cap-
illaries with different average velocities: 1) 0.3; 2) 0.5; 3) 0.7 m/sec. ∆ηefω′2,
rad2⋅Pa/sec; ω′, rad/sec.
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quency, beginning from which the flow becomes distinctly dissipative, grows for less "flexible" and stretched mole-
cules. As the induced rigidity of macromolecules increases, the dissipative curve acquires a more pronounced extre-
mum character.

From the data obtained it follows that nonstationary filtration flow of polymer solutions must ensure a higher
degree of filling and coverage of a porous bed.

Figure 3 shows the patterns of flow of a polymer solution through a model porous bed. The experimental cell
represents a layer of quartz compacted in a hermetically sealed space between two glass plates having inlet and outlet
pipes. The inlet pipe was connected either directly to a measuring vessel, into which the aqueous polymer solution had
been poured in advance, or via a module with a vibrator. In the first version, filling of the pore space with the poly-
mer solution was carried out in the stationary regime, whereas in the second version, it was carried out in the nonsta-
tionary (pulsating) regime. The measuring vessel is equipped with a system for recording the flow-rate of the solution
injected into the model bed. The solution is injected due to the excess air pressure produced in the measuring vessel;
the pressure is monitored by a manometer. The structure of the experimental setup enables us to visualize the process
of advance of the front of the polymer solution in the porous bed and to qualitatively evaluate the efficiency of dif-
ferent regimes of its filling by the flow patterns.

Calculation of the injection regimes is based on the use of the De number characterizing the beginning of the
development of a higher-than-average hydrodynamic resistance: Decr = θcε

.
.

The relaxation time may be determined experimentally [3, 7] or from the known molecular characteristics of
the polymer [3, 8]:

θc = θ0 exp (k) ,   k < 1 ;   θc = θ0 [exp (k2 ⁄ 3)] ⁄ k
1 ⁄ 3 ,   k > 1 ,   k = [η]0C .

Fig. 3. Patterns of a filling of a porous medium with a laminar inhomogeneity
(dp1

 ⁄ dp2 = 4) with PEO solution: a) stationary regime of filling at supercritical
velocities; b) the same, at subcritical velocities; c) supercritical regime of fill-
ing in the case of frequency (1000 rad/sec) action on filtration flow.
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The longitudinal velocity gradient realized in the pore cross sections in flowing of the polymer solution defies
an accurate calculation. However, we may evaluate it as a first approximation, solving the problem on flow of a New-
tonian fluid in a convergent channel [3] as an element of a pore channel: ε

.
 C 2Vf(Kdp). For the ranges of PEO mo-

lecular weight and concentrations of practical importance, the Deborah number may be assumed to be equal to unity
for k < 1 and to 2.5 for k > 1 in accordance with experimental data.

Passing from the model to an actual filtration flow and on the basis of the results obtained, we may state that
nonstationary filtration flow of polymer solutions ensures a higher degree of filling and coverage of the bed (Fig. 3c)
than stationary flow (Fig. 3a); increase in the induced rigidity of polymeric macromolecules (under the same condi-
tions) leads to a decrease in their hydrodynamic activity and hence the degree of coverage of the bed.

CONCLUSIONS

1. The experiments conducted have confirmed the correctness of the prediction of the theory of elastic-strain
effects in tensile flow of the higher degree of coverage of a porous bed in the nonstationary regime of its filling with
polymer solution and hence the mechanism of deviations from Darcy’s law the basis for which is provided by the con-
cepts of a strong strain action of the hydrodynamic field on coiled macromolecules.

2. The effects causing the highly dissipative regime in nonstationary flow of polymer solutions through porous
media play an important role in optimization of the process of filling of a porous bed with polymer solutions. Filtra-
tion flow of polymer solutions must occur in the nonstationary regime, when elastic strains appear, and the frequency
of pulsating action on the filtration flow must correspond to the maximum of the dissipative function W(ω)
C ∆ηefω′2.

NOTATION

A0, strain work done in a cycle of vibrations, J; C, concentration of the polymer in the solution, kg/m3; De,
Debora number; Decr, critical Deborah number; dp, average pore size, m; dp1 and dp2, average pore size in the first
and second porous media, m; i, imaginary unit; k, criterion of the degree of concentration of the solution; K, coeffi-
cient of porosity of the medium; M, molecular weight of the polymer, amu; t, time, sec; U

__
, average velocity of flow

through a capillary, m/sec; Vf, filtration rate, m/sec; W, dissipative function, rad2⋅Pa/sec; δ ′, phase difference between
stress and strain fluctuations, rad; ∆ηef, increment of the effective viscosity that arises in nonstationary flow, Pa⋅sec;
ε, relative strain in stationary flow; ε0, amplitude value of the relative strain in nonstationary flow; ε

.
, strain rate,

sec−1; ηef, effective viscosity, Pa⋅sec; η∗, complex dynamic viscosity, Pa⋅sec; η′, dynamic viscosity, Pa⋅sec; η ′′,
imaginary part of the complex dynamic viscosity, Pa⋅sec; [η]0, characteristic viscosity, m3/kg; θc, relaxation time of
the solution, sec; θ0, relaxation time of weakly strained coiled macromolecules, sec; σ, stress in stationary flow,
N/m2; σ0, amplitude value of the stress in nonstationary flow, N/m2; ω′, frequency of action on the flow, rad/sec;
ωcr

′ , critical frequency of action on the flow, rad/sec. Subscripts: c, concentration; cr, critical value; 0, amplitude
value; p, porous medium; p1 and p2, first and second porous media; f, filtration; ef, efficient.
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